Description
From spade's project page : We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal because the normalization layers tend to wash away semantic information. To address the issue, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method compared to existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows users to easily control the style and content of synthesis results as well as create multi-modal results.
Screen shots